
1

Files

 Opening files
afile = open(filename, mode)
afile.method()

 Open mode
 ‘r’  input
 ‘w’  output
 'a‘  append
 Adding a b to the mode string allows for binary data
 Adding a + opens the file for both input and output

 Both of the first two arguments to open must be Python strings
 An optional third argument can be used to control output 

buffering—passing a zero means that output is unbuffered

1

Using Files
 File iterators are best for reading lines
 Content is strings, not objects
 Files are buffered and seekable
 close is often optional: auto-close on collection

 Notice that file write calls return the number of characters written
2

Using Files

 Write methods don’t add the end-of-line character for us
 Read the entire file into a string all at once with the file object’s 

read method

 File iterators are often your best option

3

Storing Python Objects in Files: Conversions

 Must convert objects to strings using conversion tools

 Notice that the interactive echo gives the exact byte contents, while 
the print operation interprets embedded endof- line characters to 
render a more user-friendly display:

4

Storing Python Objects in Files: Conversions

 As Python never converts strings to numbers (or other types of 
objects) automatically, this is required if we need to gain access to 
normal object

 rstrip method to get rid of the trailing end-of-line character;

5

Storing Python Objects in Files: Conversions

 Using eval to convert from strings to objects

6



2

Storing Native Python Objects: pickle

 The pickle module is a more advanced tool that allows us to store 
almost any Python object in a file directly, with no to- or from-string 
conversion requirement on our part

7


